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Flow through a rapidly rotating conduit of 
arbitrary cross-section 

By G. S. BENTON AND D. BOYERt 
Department of Mechanics, The Johns Hopkins University, Baltimore 

(Received 23 December 1965) 

The problem of flow through rotating channels of almost arbitrary cross-section 
is considered. It is shown that when the ratio of the Rossby number and the 
Reynolds number is small ( E  = Ro/Re < 1) and when the Reynolds number is 
not too large (Re < e-l) : (1) theviscous effects are important only in thin boundary 
layers along the channel walls; (2) the flow in the interior is geostrophic; and 
(3) the inertia effects may be neglected everywhere. Solutions for the geostrophic 
region and the boundary layers are obtained and are combined to give the com- 
plete velocity field. Experimental results for a circular conduit are presented 
which are in good agreement with the theory. 

1. Introduction 
A problem which has long been of interest in fluid mechanics is that of the 

laminar flow of a homogeneous incompressible fluid through channels of various 
cross-sections. Hagen in 1839 and Pousseille in 1840 studied the flow through a 
circular channel. Their solution is the classical parabolic velocity profile. 

A new r6gime of problems arises if the channel flow occurs in a non-inertial 
system (in particular, a rotating system). Barua (1954) and Benton (1956) studied 
the flow through a circular channel rotating a t  a constant angular velocity about 
an axis perpendicular to the channel. The differential equations governing this 
motion are non-linear and intractable. Benton and Barua simplified the dif- 
ferential equations by assuming small angular velocities; their solutions are 
perturbations on the Hagen-Pousseille flow. 

A similar physical system was considered in the present study, but the dif- 
ferential equations were simplified by assuming large rotation rates. In  order to 
gain some physical insight into such channel flows, a series of experiments was 
conducted. The experiments consisted of pumping water through channels 
mounted horizontally on a table rotating rapidly around a vertical axis. The flow 
was then observed by injecting a tracer into the fluid. 

A time exposure of an experiment using a channel of circular cross-section is 
shown. Figure 1 (b)  (plate 1) was taken with a camera pointing upstream along the 
axis of the tube. The boundary layers around the periphery of the channel are 
clearly visible. Fluid in these boundary layers moves towards the point P as 
indicated in the schematic drawing. 
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These flows are analogous to an Ekman boundary layer. At P the boundary 
layers converge. As the boundary layers approach this point, however, their mass 
flow diminishes steadily: throughout the entire depth of the channel, fluid moves 
out of the boundary region and back across the conduit. Figure 1 (b )  (plate 1)  
seems to indicate that this return flow is concentrated in a ‘jet’ across the centre 
of the tube. However, this is not the case: the return flow occurs uniformly 
within the entire region of free-stream flow, as shown in figure 1 (a)  (plate 1). 
This was demonstrated experimentally in several ways : for example, a vertical 
line of tracer moved across the tube without change of shape or orientation. The 
concentration of tracer across the centre of the channel in figure 1 (plate 1) seems 
to be caused by the slightly larger density of the tracer fluid. 

Similar results are observed in rapidly rotating channels with different cross- 
sectional shapes. That is, qualitatively the flow consisted of an axial transport, 
with well-developed boundary layers occurring along the channel walls and a 
weak horizontal return flow occurring across the interior. 

The structure of such boundary-layer flows can be developed theoretically. 
In  the following discussion, a solution will first be obtained for an almost arbitrary 
cross-section. Following this, simplified solutions for conduits of symmetric cross- 
section will be developed. As an example, the solution for the circular cross- 
section will be examined in some detail. The resulting solutions are similar 
in many ways to those presented by Hsueh (1965) who studied flow over a 
corrugated bottom in a laterally unbounded system. However, the solutions 
discussed by Hsueh are limited to corrugations of small slope, whereas in the 
present study the slope of the boundary may be finite. 

In the boundary-layer solutions for flow through a conduit, examined below, 
singularities exist a t  points where the channel walls are parallel to the axis of 
rotation. Although the fluid velocities may become arbitrarily small in the vicinity 
of the singularity, the boundary-layer solution is not valid in the immediate 
vicinity of this point. This does not seem to be of critical physical importance for 
a point singularity; however, the situation is different when the channel walls are 
parallel to the axis of rotation over a finite length. To avoid this difficulty, cross- 
sections which have a finite part of their boundaries parallel to the axis of rotation 
are excluded from the present discussion. 

2. The governing differential equations 
It is well known that the equations of motion of a homogeneous incompressible 

fluid in laminar steady-state flow relative to a set of rectangular Cartesian co- 
ordinates (x, y, x )  rotating a t  a constant angular velocity w with respect to an 
inertial system are 

where 

Here v(u, v, w) is the Eulerian velocity; a, the perpendicular distance from the 
axis of rotation; p ,  the pressure; p, the density; and $ the gravitational potential. 
The equation for conservation of mass is 

v . v  = 0. ( 2 . 2 )  

(2.1) (v.V)v = -V(D--22wxv+vV2v, 

0 = +w2a2+ (p/p) + $. 
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Choose the z-direction to be parallel to the channel axis and assume that all of the 
dependent variables, except @, are independent of x. Thus @ must be a linear 
function of z; i.e. 

Choose the y-axis to be parallel to the axis of rotation and introduce the 
following dimensionless quantities : 

= -a ,  where a is a constant. 

where S is the maximum vertical dimension of the channel and W is a charac- 
teristic speed in the x-direction. Introduce the stream-function defined by the 
equations 

Equation ( 2 . 2 )  is thus identically satisfied. 

the (x, y)-plane, one obtains the x-component of the vorticity equation 

u* = -&, v* = $z. 

Substituting into (2.1), and eliminating the variation of the total pressure in 

and the z-momentum equation 

where Re = WXlv, e = v/(2wS2),  

and where a, is a new constant. Note that, for convenience, the asterisks have 
been dropped from the dimensionless quantities. 

The boundary conditions on the dependent variables $ and w are 

g+(walls) = qkn(walls) = w(wal1s) = 0, (2 .5)  

where n is the derivative taken normal to the wall. 

3. Scaling of the flow field 
If the angular velocity of the rotating system is made arbitrarily large, the 

non-dimensional parameter E can be made arbitrarily small for any real fluid and 
for any conduit of finite size. Let us assume that, mathematically, E is infini- 
tesimal. For the physical problem we wish to consider, let us investigate what 
restrictions must be placed on other physical parameters. 

Let the Reynolds number Re be of order of magnitude E*. In  the interior of the 
flow field, away from all boundaries, it will be assumed that increments of 
dependent variables are of the same order as the variables themselves. It will 
also be assumed that the non-dimensional increment of length in the cross- 
channel direction, ax, is of the order er, where r < 0. As will be noted below, this 
places some restriction on the shape of the channel to be considered. In  physical 
space, all characteristic lengths which describe variations of the boundary in the 
x-direction must be of a scale which is equal to or greater than the depth of the 
channel. 
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In  the interior, let w and @ be written w, and $-I, and assume that these 
variables can be expressed as power series in e. The leading terms are 

w, = W,€O, $kI = $ k 0 € P ,  

where w, and $-, are the order of unity, p is unspecified, and the fact that wI is of 
the order eo follows from the method of non-dimensionalization. 

Let us now require that in the interior the effect of friction is unimportant and 
the flow is geostrophic (i.e. the inertial terms are negligible). This implies from 
(2.4) that p < 1 and q > - 1. From (2.3) it  also follows that p > 0. Thus 

O < p < l ,  q > - 1  

S 

FIGURE 2.  Natural co-ordinate system for boundary-layer equations. 

In  the interior the governing differential equations become 

wol/ = 0, €p$oy = a,, (3.1) 

wo = g(47 $0 = % y + f ( x ) ,  (3.2) 

which implies that a, is a constant of order e p .  These equations have the solutions 

where a, = @a, and where the functions g(x) andf(z) are to be determined. 
Obviously, (3.2) cannot be made to satisfy the no-slip boundary conditions. 

We thus conclude that, if approximate solutions of (2.3) and (2.4) exist for the 
range of values of e and Re we are considering, they must be of the boundary- 
layer type; that is, near the channel walls normal derivatives must be of different 
order than so. To investigate this problem, one may introduce the natural co- 
ordinate system shown in figure 2. For a thin boundary in the vicinity of the wall, 
one can readily transform equations (2.3) and (2.4) into the ( s , n )  co-ordinate 
system. When this is done, the slope of the boundary and the radius of curvature 
of the boundary appear as parameters. 

Assume the following relationships, which are characteristic of boundary layers 
near the regular boundaries: 

(i) alas ea (a> 0); 

(ii) 
(iii) R N @ (c < 0); 
(iv) Slope of wall + infinite; 

N e-b (b  > 0); 
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where R is the radius of curvature of the wall. Under such circumstances the 
governing differential equations become (after neglecting terms which are 
obviously of higher order) 1 

where X = X ( s ) ,  Y = Y(s )  are the parametric equations for the channel wall. 
Provided friction is important in the boundary layer, the previous restrictions on 
p and q ensure that the inertia terms are negligible in both of these equations, and 
that there must be a balance between the friction and Coriolis terms in (3 .3 ) .  
This yields the relations 

- b  = 1 + p - 4 b ,  and p - b  = 1 - 2 b ,  

respectively, which require that b = 4 and p = 4. 
These results can be summarized briefly. The shape of the channel is restricted 

to a cross-section in which the channel wall is parallel to the axis of rotation a t  
no more than two points; furthermore, the characteristic length scale for undula- 
tions of the boundary in the x-direction shall not be of a smaller order of magnitude 
than the depth of the channel. In  this system, the Reynolds number is of the 
order of magnitude @, where q > - 1. These restrictions make it reasonable to 
expect a solution in which the flow is geostrophic in the interior and in which 
the effects of inertia are negligible in the boundary layers. The governing differ- 
ential equations are linear and are tractable. 

4. The velocity field in a conduit of arbitrary cross-section 

function in the interior geostrophic region are 
As noted previously, the solutions for the axial velocity and for the stream- 

w O  = g(x)7 $0 = % y + f  (')7 (4 .1 )  

where wr = woeo; $I = $oe*; and where f (x) and g(x) are to be determined. To 
evaluate the velocity distributions in the boundary layers, let us set up the 
co-ordinates shown in figure 3. The upper portion of the boundary (subscript 2) 
and the lower portion of the boundary (subscript 1 )  are separated by the points P 
and P', at the extreme positions in the x-direction. It should be noted that P and 
P' need not be at the same vertical co-ordinate. At these extreme points the wall 
of the conduit may be parallel to the axis of rotation, as shown a t  P', or there may 
be a sharp angle in the wall, as at  P. The equations of the two bounding surfaces 
may be expressed in parametric form as 

x, = X,(S,), x, = x (8 ) 
Y1 = Y1(s1)7 '2 = Y2(sZ)* "'t 

In the vicinity of the upper and lower boundaries, write 

w, = wo €0 + W ( W ,  
$kg = $o €* + @W, (4 .3 )  
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where the subscript B indicates that the variables are evaluated in a boundary 
layer, and the superscript i denotes boundary 1 or 2. It is clear that at the outer 
edge of the boundary layer w(i) and y W  must vanish. 

x,=x,  G I ) ;  Y,= Y ,  6,) 
FIGURE 3. Natural co-ordinates for boundary-layer equations in channel of 

irregular shape. 

After substituting (4.1) and (4.3) into the boundary-layer equations (3.3), one 
obtains 

(4.4) 
w ( ~ '  - (dXi/dsi) $2; = 0. 'I $$jninini+ (dXi/dsi) WZ;  = 0 

ni ni 

Solutions of these equations which satisfy the no-slip condition at the lower 
boundary are 

where 

The corresponding solutions for the upper boundary are 

where 

The conditions (4.6) and (4.8) are expressed, respectively, in terms of the 
parameter s1 and s2 along the lower and upper boundaries. It is convenient to 
re-cast these equations in terms of the independent variable x. Let us write 
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where Efi and F. are the new functional forms of & and yZ.  Then, in terms of x, 
the conditions (4.6) and (4.8) become 

(4.10) 1 g(x) + (011 m4 +f (4) (2 COB [B,(X)l)4 = 0, 

g(x) - (011 72@)  +f (4) {2 cos [4(X)l}* = 0, 

f(x) = - [OI,{~,(COS 82)h + ~ , ( c O s  ~,)+}]/[(cos el)+ + (COS o,)*], 
g(x) = [O11(F2-Y1) (2COS8, cos8,)+]/[(cos01)*+ (COSO,)*]. 

respectively. 
The solutions for the unknown functions f (2) and g(x) are therefore 

} (4.11) 

These functions, when substituted into (4. l ) ,  specify the complete solution for 
the velocity field far away from the boundaries. Substitution of (4.1) into (4.5) 
and (4.7) specifies the flow in the boundary layers. 

It is to be noted that in the interior the flow across the channel (u component) 
is a constant. However, the axial flow and the vertical component of the velocity 
may be functions of the x-co-ordinate. 

The solutions are not valid in the immediate neighbourhood of points P and 
P', as shown in figure 3. It is important, however, to ascertain whether these 
solutions call for velocities which are arbitrarily small, finite but non-zero, or 
infinite in the vicinity of these two points. In  the latter case, especially, a question 
could be raised concerning the effect of the singularities. 

It has not been possible to develop a full solution for the stream-function and 
the axial component of the flow in the vicinity of the two singularities. However, 
it  would certainly be desirable to ensure that the vertical component v does not 
become indefinitely large in the neighbourhood of P and P'. Consider the neigh- 
bourhood of a singularity P, as shown in figure 3. The two angles Oz0 and O,, may 
or may not be equal, and either or both may be right angles. In  the neighbourhood 
of P 

f(4 - --a! 1 9 (4.12) 

af (tan 02,) (cos Bz0)*+ (tan O,,) (cos _ _  Ole)* 
?Jug = iG (cos 02,)3 + (cos O,,)* 

x(tan O,,) (cos B2,)* + x(tan Ole) (cos e,,p 
(cos 8,,)+ + (cos 8,,)+ 

and therefore 

(4.13) 

It is to be noted that vo tends to become infinite in the neighbourhood of P if 
one of the two angles B,, and 8,, is a right angle. To exclude this possibility, 
certain cross-sectional shapes (such as a semicircle) must be excluded. 

5. Physical discussion and example 
The physical interpretation of the general solution presented in the preceding 

section is straightforward. In  the interior, the flow is geostrophic. This does not 
exclude, however, the possibility of variation of the v and w components of the 
flow in the x-direction. To the order of accuracy considered, such velocity shears 
will result in negligible friction and inertial effect. 

The value of the functions v(x) and w(x) are determined in the lower and upper 
boundary layers. The axial component of the flow w(x) is specified by the rate of 
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variation ofthe total pressure in the x-direction. If this quantity is to be a function 
of the x-co-ordinate alone, then the quantity Q,% must be the same throughout the 
entire depth of the channel. This quantity is, however, associated with the mass 
transport in the x-direction in each boundary layer. If the drop in Q, in the upper 
boundary layer is to be compatible with the drop in Q, in the bottom boundary 
layer, there must in general be a transfer of fluid from one boundary layer to 
another in order to appropriately adjust the mass flows. Thus, both w(x)  and v(x) 
are determined by the boundary-layer solution. 

Y 

- 1.8 - 1.2 - 0.6 0 0-6 1 -2 1 *8 

-- 0.6 
-- 0 4  

-- 0 2  

0 
FIGURE 4. Flow through tube with plane bottom and cylindrical top: (a) streamlines 

in cross-section outside of boundary layers; ( b )  axial velocity w(z) in free stream. 

Let us now apply the equations to a particular example. Consider the channel 
shown in figure 4 (a) ,  in which the upper boundary is a portion of a circular arc 
of radius 2 and the lower boundary is horizontal and perpendicular to the axis of 
rotation. For this case, the various pertinent functions axe 

- 

(5.1) 
Yl = 1, F2 = 4(4-x2), 

coso, = 1, coso, = 42/(4-x2). 

This yields, for the interior 

42y - 42{(4 - x2)Q + 4 2 )  
(4 - x2)i + 42 

(4--2)4+ 42  

@o = 

2(4 - x2)${(4 - x2)&- 1) wo = 
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where a, has been determined by normalizing on the axial velocity component 
at x = 0. Recall that $in the interior is given by $I = d$,. The velocity distribu- 
tions in the upper and lower boundary layers can readily be determined, but are 
not reproduced here. The interior stream-function and axial velocity component 
are plotted in figure 4. 

6. Channels with symmetric cross-sections 
Conduits which are symmetrical in the y-co-ordinate are of particular interest. 

One reason for this, of course, is the fact that the lower half of such a conduit 
approximates the conditions of flow through an open channel with a horizontal 
free surface on which there are no shearing stresses. This approximation involves 
negligible error in the case of geophysical applications, in which the centrifugal 
force due to the earth's rotation is compensated for by the oblateness of the earth 
and therefore does not explicitly enter the definition of @. 

For a symmetric cross-section 
- - 
Yz = -Y1, 0, = -8,. 

Thus, as a result of the symmetry, the vertical velocity uo is identically equal to 
zero and the components uo and wo are given by 

uo = - a,, wo = - a1(2 cos Ol)+F1. (6.2) 

It should be noted that, if 8, is small, cos0, z 1 and the axial velocity wo is 
approximately proportional to the elevation at the bottom Fl. This is in accord 
with the theory for flow over corrugated bottoms with small slope, developed 
by Hsueh (1965). 

In the vicinity of the lower boundary, the solution is given by (4.5). Near the 
upper boundary, the velocity distribution as given by (4.7) is similar but inverted. 

As an example, consider a conduit with circular cross-section. The pertinent 

functions are - 
Y 1 = - J ( $ - x 2 ) ,  C O S O 1 =  Zj(l-4xZ), (6.3) 

which yields for the flow in the interior 

(6.4) $o = 42y, wo = (1 - 4x2}2, 

where a1 is again eliminated by normalizing on the axial velocity component a t  
x = 0. This distribution is presented in figure 5, where it is compared with 
experimental data. 

7. Experimental studies of flow through a circular conduit 
The validity of the above theory can readily be tested by examining the 

distribution of axial velocity ofa fluid moving through a conduit of circular cross- 
section. In such a study the existence of boundary layers can also be qualitatively 
verified. 

A plastic pipe 7.62 em (3in.) in diameter was used. The pipe, water reservoirs, 
and pump were placed on a rotating table. The water temperature varied from 
about 21 to 26 "C, and rates of rotation of 8 to 18 revolutions per minute were 
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employed. The value of e varied from 4-5 x to 1.0 x lo-*. The Reynolds 
number was also scaled appropriately. For the theory to be applicable, it  is 
required that Re << e-l, or alternatively, in terms of the Rossby number, 
Ro = W/2wS << 1. This was achieved by restricting the speed of the axial flow. 
In the experiments the maximum velocity W, varied from 0.76 to 0.88 cm/sec, 
and the Rossby number varied from 2.7 x 10W to 6-2 x 10P. 

T 

- 0.5 - 0.4 - 0.3 - 0.2 - 0.1 0 0.1 0.2 0.3 0.4 0.5 
X 

FIGURE 5. Measurements of axial velocity across the axis of a rotating cylindrical tube. 
Theoretical distribution entered as solid curve. Theory calls for errors of the order of 10 yo 
or larger for 1x1 > 0.27. 

Ten series of measurements of the lateral distribution of axial velocity were 
made by injecting dye into the fluid at various positions across the pipe and by 
measuring the axial motion of the dye from photographs. The results are shown 
in figure 5. The profile of the observed axial velocities follows the theory very 
closely near the centre of the pipe. Differences are, however, observed near the 
lateral boundaries where the pipe wall becomes parallel to  the axis of rotation. 

This is, of course, not surprising in view of the singularities which exist at these 
points. The theory as presented assumes that in equation (3.3) dX/ds  >> €4 and 
also that dX/ds $ Ro. Using values of e and Ro from the experiment, one obtains 
the requirement that cos8 % 0.06, where 8 is the slope of the boundary. Thus, 
the theory should not be very satisfactory for cos8 < 0.6, or 53' < 8 < 127". 
This corresponds to 1x1 = 0.4, a value close to that a t  which the observed data 
become significantly different from the theoretical predictions. It should also be 
noted that the observed deviations are not symmetric across the channel: a result 
which would be characteristic of the effects of the non-linear inertial terms. The 
high axial velocities for x < - 0.3 are probably associated with the advection of 
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large central velocities toward the tube boundary by the cross-flow. Presumably, 
if a higher rotation rate were used, and the Rossby number and E were reduced 
accordingly, the theory would be valid over an increasing portion of the pipe. 
This could not be achieved, however, with the available turntable. 

In  general, the results of the experiments show that the observed distribution 
of axial velocities are not too different from those predicted. While this cannot be 
regarded as complete verification of the theory, the results are encouraging. 

The research presented in this paper was supported by the National Science 
Foundation, under Grant GP-1892. The assistance of Mr Gerald Putland in 
conducting the laboratory experiments is also gratefully acknowledged. 
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FIGGRE 1. Flow through a, cylindrical tube: (a) schematic drawing of flow in cross- 
section; ( b )  photograph taken along axis of tube; ( c )  schematic drawings and photographs 
of top and side vicws. 
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